数学之美,在于简单
——浅读《数学之美》有感
人们发现真理的形式上从来都是简单的,而不是复杂和含混的。
——牛顿
自小就学数学的我,并不觉得它是美好的。于我而言,数学就像紧箍咒一样,不能提,一提。就头疼。
而看了吴军博士所写的《数学之美》后,我对数学的感觉,从以前的被动获取和勉强学习,变成了强烈热爱和主动积极的学习。这原因就在于我发现了它的价值,它的一枝独秀,不可或缺的地位,数学的博大精深和对其相关的各类事业的发展的价值已使我深深陶醉其中。这本书中有很多复杂且长的公式,但这并不妨碍大众的阅读,因为它并非在于让你了解更多IT领域的知识,而是用了大量篇幅介绍各个领域的典故,让我们感受数学思维。这就像李欣教授所说:“成为一个领域的大师有其偶然性,但更有其必然性。其必然性就是大师们的思维方法。”
英国哲学家弗朗西斯·培根在《论美德》这篇文章中讲:“美德就如同华贵的宝石,在朴素的衬托下最显华丽。”数学的美妙,也恰恰在于一个好的思维,好的方法。
在《数学之美》十四章,我被它的标题吸引到了。“余弦定理和新闻的分类”,这俩看似八竿子打不着。却有着紧密的联系。可以说,新闻的分类很大程度上依赖的是余弦定理。我们都知道,计算机处理一个问题是让他去算,而不是像人类一样理解了它,再去解决。而科学家们遇到这个问题,却用了另一种思维,他们把文字的新闻变成一组可计算的数字,然后再设计一个算法来算出任意两篇新闻的相似性。稍详细一些就是:对于一篇新闻中的所有实词。计算出它们的TF-IDF值,再把这些值按照其在对应词汇表的位置依次排列就得到一个向量,这即新闻的特征向量。这时,就可以通过计算两个向量夹角来判断对应的新闻主题的接近程度,这也就要用到余弦定理了。我在必修五数学书上学到余弦定理时,很难想象它可以用来对新闻进行分类。在这里我又一次看到了数学工具的用途。
在书中,我也了解到了数学的发展实际上是不断的抽象和概括的过程。这些抽象了的方法看似离生活越来越远,但他们最终能找到应用的地方,布尔代数便是如此。
布尔代数的简单不能再简单了。运算的元素只有两个0和1,基本的运算只有“与”、“或”和“非”。几乎就是我们现在所学的“判断命题真假”。在布尔代数提出后的80多年里,他确实没有什么像样的应用。直到1938年香农在他的硕士论文中指出,布尔代数来实现开关电路。才使得布尔代数成为数字电路的基础。正是依靠这一点,人类用一个个开关电路最终“搭出”电子计算机。
这些,都能体现作者“简单即是美”的思想。他在书中也写道:“数学的精彩之处就在于简单的模型可以干大事。”这些,也都是我从未感受到过的。并且,在这本书中,作者也用了不少篇幅来介绍通信领域的世界级专家,让我对真正的世界级学者有更多的了解和理解,比如贾里尼克,Google AK-47的设计者——阿米特·辛格博士,自然语言处理的教父米奇·马库斯等等。
爱因斯坦说过:“从希腊哲学到现代物理学的整个科学史中。不断有人力图地表面上极为复杂的自然现象归结为几个简单的基本概念和关系,这就是整个自然哲学的基本原理。”这本书把数学在IT领域的美丽予以了精彩表达,我也知道,把一件复杂的事用简单的语言表达出来,并非易事,这应该也是各界人士都对这本书予以好评的原因吧。
当然,我也明白,欣赏美不是终极目的,更值得我们追求的是创造美境界。
还有,希望未来的自己,无论生活好与坏,都能少一点浮躁,多一点踏实和对自然科学本质的好奇求知。
暂无评论
发表评论 我再想想